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ABSTRACT

We introduce Zep, a novel memory layer service for AI agents that outperforms the current state-of-
the-art system, MemGPT, in the Deep Memory Retrieval (DMR) benchmark. Additionally, Zep excels
in more comprehensive and challenging evaluations than DMR that better reflect real-world enterprise
use cases. While existing retrieval-augmented generation (RAG) frameworks for large language
model (LLM)-based agents are limited to static document retrieval, enterprise applications demand
dynamic knowledge integration from diverse sources including ongoing conversations and business
data. Zep addresses this fundamental limitation through its core component Graphiti—a temporally-
aware knowledge graph engine that dynamically synthesizes both unstructured conversational data
and structured business data while maintaining historical relationships. In the DMR benchmark,
which the MemGPT team established as their primary evaluation metric, Zep demonstrates superior
performance (94.8% vs 93.4%). Beyond DMR, Zep’s capabilities are further validated through
the more challenging LongMemEval benchmark, which better reflects enterprise use cases through
complex temporal reasoning tasks. In this evaluation, Zep achieves substantial results with accuracy
improvements of up to 18.5% while simultaneously reducing response latency by 90% compared
to baseline implementations. These results are particularly pronounced in enterprise-critical tasks
such as cross-session information synthesis and long-term context maintenance, demonstrating Zep’s
effectiveness for deployment in real-world applications.

1 Introduction

The impact of transformer-based large language models (LLMs) on industry and research communities has garnered
significant attention in recent years [1]. A major application of LLMs has been the development of chat-based agents.
However, these agents’ capabilities are limited by the LLMs’ context windows, effective context utilization, and
knowledge gained during pre-training. Consequently, additional context is required to provide out-of-domain (OOD)
knowledge and reduce hallucinations.

Retrieval-Augmented Generation (RAG) has emerged as a key area of interest in LLM-based applications. RAG
leverages Information Retrieval (IR) techniques pioneered over the last fifty years[2] to supply necessary domain
knowledge to LLMs.

Current approaches using RAG have focused on broad domain knowledge and largely static corpora—that is, document
contents added to a corpus seldom change. For agents to become pervasive in our daily lives, autonomously solving
problems from trivial to highly complex, they will need access to a large corpus of continuously evolving data from users’
interactions with the agent, along with related business and world data. We view empowering agents with this broad
and dynamic "memory" as a crucial building block to actualize this vision, and we argue that current RAG approaches
are unsuitable for this future. Since entire conversation histories, business datasets, and other domain-specific content
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cannot fit effectively inside LLM context windows, new approaches need to be developed for agent memory. Adding
memory to LLM-powered agents isn’t a new idea—this concept has been explored previously in MemGPT [3].

Recently, Knowledge Graphs (KGs) have been employed to enhance RAG architectures to address many of the
shortcomings of traditional IR techniques[4]. In this paper, we introduce Zep[5], a memory layer service powered by
Graphiti[6], a dynamic, temporally-aware knowledge graph engine. Zep ingests and synthesizes both unstructured
message data and structured business data. The Graphiti KG engine dynamically updates the knowledge graph with
new information in a non-lossy manner, maintaining a timeline of facts and relationships, including their periods of
validity. This approach enables the knowledge graph to represent a complex, evolving world.

As Zep is a production system, we’ve focused heavily on the accuracy, latency, and scalability of its memory retrieval
mechanisms. We evaluate these mechanisms’ efficacy using two existing benchmarks: a Deep Memory Retrieval task
(DMR) from MemGPT[3], as well as the LongMemEval benchmark[7].

2 Knowledge Graph Construction

In Zep, memory is powered by a temporally-aware dynamic knowledge graph G = (N , E , ϕ), where N represents
nodes, E represents edges, and ϕ : E → N ×N represents a formal incidence function. This graph comprises three
hierarchical tiers of subgraphs: an episode subgraph, a semantic entity subgraph, and a community subgraph.

• Episode Subgraph Ge: Episodic nodes (episodes), ni ∈ Ne, contain raw input data in the form of messages,
text, or JSON. Episodes serve as a non-lossy data store from which semantic entities and relations are extracted.
Episodic edges, ei ∈ Ee ⊆ ϕ∗(Ne ×Ns), connect episodes to their referenced semantic entities.

• Semantic Entity Subgraph Gs: The semantic entity subgraph builds upon the episode subgraph. Entity nodes
(entities), ni ∈ Ns, represent entities extracted from episodes and resolved with existing graph entities. Entity
edges (semantic edges), ei ∈ Es ⊆ ϕ∗(Ns × Ns), represent relationships between entities extracted from
episodes.

• Community Subgraph Gc: The community subgraph forms the highest level of Zep’s knowledge graph.
Community nodes (communities), ni ∈ Nc, represent clusters of strongly connected entities. Communities
contain high-level summarizations of these clusters and represent a more comprehensive, interconnected view
of Gs’s structure. Community edges, ei ∈ Ec ⊆ ϕ∗(Nc ×Ns), connect communities to their entity members.

The dual storage of both raw episodic data and derived semantic entity information mirrors psychological models of
human memory. These models distinguish between episodic memory, which represents distinct events, and semantic
memory, which captures associations between concepts and their meanings [8]. This approach enables LLM agents
using Zep to develop more sophisticated and nuanced memory structures that better align with our understanding of
human memory systems. Knowledge graphs provide an effective medium for representing these memory structures,
and our implementation of distinct episodic and semantic subgraphs draws from similar approaches in AriGraph [9].

Our use of community nodes to represent high-level structures and domain concepts builds upon work from GraphRAG
[4], enabling a more comprehensive global understanding of the domain. The resulting hierarchical organization—from
episodes to facts to entities to communities—extends existing hierarchical RAG strategies [10][11].

2.1 Episodes

Zep’s graph construction begins with the ingestion of raw data units called Episodes. Episodes can be one of three
core types: message, text, or JSON. While each type requires specific handling during graph construction, this paper
focuses on the message type, as our experiments center on conversation memory. In our context, a message consists of
relatively short text (several messages can fit within an LLM context window) along with the associated actor who
produced the utterance.

Each message includes a reference timestamp tref indicating when the message was sent. This temporal information
enables Zep to accurately identify and extract relative or partial dates mentioned in the message content (e.g., "next
Thursday," "in two weeks," or "last summer"). Zep implements a bi-temporal model, where timeline T represents the
chronological ordering of events, and timeline T ′ represents the transactional order of Zep’s data ingestion. While
the T ′ timeline serves the traditional purpose of database auditing, the T timeline provides an additional dimension
for modeling the dynamic nature of conversational data and memory. This bi-temporal approach represents a novel
advancement in LLM-based knowledge graph construction and underlies much of Zep’s unique capabilities compared
to previous graph-based RAG proposals.
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The episodic edges, Ee, connect episodes to their extracted entity nodes. Episodes and their derived semantic edges
maintain bidirectional indices that track the relationships between edges and their source episodes. This design
reinforces the non-lossy nature of Graphiti’s episodic subgraph by enabling both forward and backward traversal:
semantic artifacts can be traced to their sources for citation or quotation, while episodes can quickly retrieve their
relevant entities and facts. While these connections are not directly examined in this paper’s experiments, they will be
explored in future work.

2.2 Semantic Entities and Facts

2.2.1 Entities

Entity extraction represents the initial phase of episode processing. During ingestion, the system processes both the
current message content and the last n messages to provide context for named entity recognition. For this paper and in
Zep’s general implementation, n = 4, providing two complete conversation turns for context evaluation. Given our
focus on message processing, the speaker is automatically extracted as an entity. Following initial entity extraction, we
employ a reflection technique inspired by reflexion[12] to minimize hallucinations and enhance extraction coverage.
The system also extracts an entity summary from the episode to facilitate subsequent entity resolution and retrieval
operations.

After extraction, the system embeds each entity name into a 1024-dimensional vector space. This embedding enables
the retrieval of similar nodes through cosine similarity search across existing graph entity nodes. The system also
performs a separate full-text search on existing entity names and summaries to identify additional candidate nodes.
These candidate nodes, together with the episode context, are then processed through an LLM using our entity resolution
prompt. When the system identifies a duplicate entity, it generates an updated name and summary.

Following entity extraction and resolution, the system incorporates the data into the knowledge graph using predefined
Cypher queries. We chose this approach over LLM-generated database queries to ensure consistent schema formats and
reduce the potential for hallucinations.

Selected prompts for graph construction are provided in the appendix.

2.2.2 Facts

Fact extraction follows a process similar to entity extraction. The system utilizes both the episodic context and the
previously extracted entities as input for fact extraction. The system extracts facts between pairs of entities, which may
or may not be distinct. Each fact represents a self-contained proposition that includes entity names and constitutes an
atomic unit of context-free information. The system also extracts a name for each fact containing its key predicate.
Importantly, the same fact can be extracted multiple times between different entities, enabling Graphiti to model
complex multi-entity facts through an implementation of hyper-edges.

Following extraction, the system generates embeddings for facts in preparation for graph integration. The system
performs edge deduplication through a process similar to entity resolution. The hybrid search for relevant edges is
constrained to edges existing between the same entity pairs as the proposed new edge. This constraint not only prevents
erroneous combinations of similar edges between different entities but also significantly reduces the computational
complexity of the deduplication process by limiting the search space to a subset of edges relevant to the specific entity
pair.

2.2.3 Temporal Extraction and Edge Invalidation

A key differentiating feature of Graphiti compared to other knowledge graph engines is its capacity to manage dynamic
information updates through temporal extraction and edge invalidation processes.

The system extracts temporal information about facts from the episode context using tref. This enables accurate
extraction and datetime representation of both absolute timestamps (e.g., "Alan Turing was born on June 23, 1912") and
relative timestamps (e.g., "I started my new job two weeks ago"). Consistent with our bi-temporal modeling approach,
the system tracks four timestamps: t′created and t′expired ∈ T ′ monitor when facts are created or invalidated in the
system, while tvalid and tinvalid ∈ T track the temporal range during which facts held true. These temporal data points
are stored on edges alongside other fact information.

The introduction of new edges can invalidate existing edges in the database. The system employs an LLM to compare
new edges against semantically related existing edges to identify potential contradictions. When the system identifies
temporally overlapping contradictions, it invalidates the affected edges by setting their tinvalid to the tvalid of the
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invalidating edge. Following the transactional timeline T ′, Graphiti consistently prioritizes new information when
determining edge invalidation.

This comprehensive approach enables the dynamic addition of data to Graphiti as conversations evolve, while maintain-
ing both current relationship states and historical records of relationship evolution over time.

2.3 Communities

After establishing the episodic and semantic subgraphs, the system constructs the community subgraph through
community detection. While our community detection approach builds upon the technique described in GraphRAG[4],
we employ a label propagation algorithm [13] rather than the Leiden algorithm [14]. This choice was influenced by
label propagation’s straightforward dynamic extension, which enables the system to maintain accurate community
representations for longer periods as new data enters the graph, delaying the need for complete community refreshes.

The dynamic extension implements the logic of a single recursive step in label propagation. When the system adds
a new entity node ni ∈ Ns to the graph, it surveys the communities of neighboring nodes. The system assigns the
new node to the community held by the plurality of its neighbors, then updates the community summary and graph
accordingly. While this dynamic updating enables efficient community extension as data flows into the system, the
resulting communities gradually diverge from those that would be generated by a complete label propagation run.
Therefore, periodic community refreshes remain necessary. However, this dynamic updating strategy provides a
practical heuristic that significantly reduces latency and LLM inference costs.

Following [4], our community nodes contain summaries derived through an iterative map-reduce-style summarization
of member nodes. However, our retrieval methods differ substantially from GraphRAG’s map-reduce approach [4]. To
support our retrieval methodology, we generate community names containing key terms and relevant subjects from the
community summaries. These names are embedded and stored to enable cosine similarity searches.

3 Memory Retrieval

The memory retrieval system in Zep provides powerful, complex, and highly configurable functionality. At a high level,
the Zep graph search API implements a function f : S → S that accepts a text-string query α ∈ S as input and returns
a text-string context β ∈ S as output. The output β contains formatted data from nodes and edges required for an LLM
agent to generate an accurate response to query α. The process f(α) → β comprises three distinct steps:

• Search (φ): The process begins by identifying candidate nodes and edges potentially containing relevant infor-
mation. While Zep employs multiple distinct search methods, the overall search function can be represented as
φ : S → En

s ×Nn
s ×Nn

c . Thus, φ transforms a query into a 3-tuple containing lists of semantic edges, entity
nodes, and community nodes—the three graph types containing relevant textual information.

• Reranker (ρ): The second step reorders search results. A reranker function or model accepts a list of search
results and produces a reordered version of those results: ρ : φ(α), ... → En

s ×Nn
s ×Nn

c .
• Constructor (χ): The final step, the constructor, transforms the relevant nodes and edges into text context:
χ : En

s ×Nn
s ×N cn → S. For each ei ∈ Es, χ returns the fact and tvalid, tinvalid fields; for each ni ∈ Ns,

the name and summary fields; and for each ni ∈ Nc, the summary field.

With these definitions established, we can express f as a composition of these three components: f(α) = χ(ρ(φ(α))) =
β.

Sample context string template:

FACTS and ENTITIES represent relevant context to the current conversation.
These are the most relevant facts and their valid date ranges. If the fact is about an event, the event takes place during
this time.
format: FACT (Date range: from - to)
<FACTS>
{facts}
</FACTS>
These are the most relevant entities
ENTITY_NAME: entity summary
<ENTITIES>
{entities}
</ENTITIES>
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3.1 Search

Zep implements three search functions: cosine semantic similarity search (φcos), Okapi BM25 full-text search (φbm25),
and breadth-first search (φbfs). The first two functions utilize Neo4j’s implementation of Lucene [15][16]. Each
search function offers distinct capabilities in identifying relevant documents, and together they provide comprehensive
coverage of candidate results before reranking. The search field varies across the three object types: for Es, we search
the fact field; for Ns, the entity name; and for Nc, the community name, which comprises relevant keywords and
phrases covered in the community. While developed independently, our community search approach parallels the
high-level key search methodology in LightRAG [17]. The hybridization of LightRAG’s approach with graph-based
systems like Graphiti presents a promising direction for future research.

While cosine similarity and full-text search methodologies are well-established in RAG [18], breadth-first search over
knowledge graphs has received limited attention in the RAG domain, with notable exceptions in graph-based RAG
systems such as AriGraph [9] and Distill-SynthKG [19]. In Graphiti, the breadth-first search enhances initial search
results by identifying additional nodes and edges within n-hops. Moreover, φbfs can accept nodes as parameters for the
search, enabling greater control over the search function. This functionality proves particularly valuable when using
recent episodes as seeds for the breadth-first search, allowing the system to incorporate recently mentioned entities and
relationships into the retrieved context.

The three search methods each target different aspects of similarity: full-text search identifies word similarities, cosine
similarity captures semantic similarities, and breadth-first search reveals contextual similarities—where nodes and
edges closer in the graph appear in more similar conversational contexts. This multi-faceted approach to candidate
result identification maximizes the likelihood of discovering optimal context.

3.2 Reranker

While the initial search methods aim to achieve high recall, rerankers serve to increase precision by prioritizing the
most relevant results. Zep supports existing reranking approaches such as Reciprocal Rank Fusion (RRF) [20] and
Maximal Marginal Relevance (MMR) [21]. Additionally, Zep implements a graph-based episode-mentions reranker
that prioritizes results based on the frequency of entity or fact mentions within a conversation, enabling a system where
frequently referenced information becomes more readily accessible. The system also includes a node distance reranker
that reorders results based on their graph distance from a designated centroid node, providing context localized to specific
areas of the knowledge graph. The system’s most sophisticated reranking capability employs cross-encoders—LLMs
that generate relevance scores by evaluating nodes and edges against queries using cross-attention, though this approach
incurs the highest computational cost.

4 Experiments

This section analyzes two experiments conducted using LLM-memory based benchmarks. The first evaluation employs
the Deep Memory Retrieval (DMR) task developed in [3], which uses a 500-conversation subset of the Multi-Session
Chat dataset introduced in "Beyond Goldfish Memory: Long-Term Open-Domain Conversation" [22]. The second
evaluation utilizes the LongMemEval benchmark from "LongMemEval: Benchmarking Chat Assistants on Long-Term
Interactive Memory" [7]. Specifically, we use the LongMemEvals dataset, which provides an extensive conversation
context of on average 115,000 tokens.

For both experiments, we integrate the conversation history into a Zep knowledge graph through Zep’s APIs. We then
retrieve the 20 most relevant edges (facts) and entity nodes (entity summaries) using the techniques described in Section
3. The system reformats this data into a context string, matching the functionality provided by Zep’s memory APIs.

While these experiments demonstrate key retrieval capabilities of Graphiti, they represent a subset of the system’s
full search functionality. This focused scope enables clear comparison with existing benchmarks while reserving the
exploration of additional knowledge graph capabilities for future work.

4.1 Choice of models

Our experimental implementation employs the BGE-m3 models from BAAI for both reranking and embedding tasks
[23] [24]. For graph construction and response generation, we utilize gpt-4o-mini-2024-07-18 for graph construction,
and both gpt-4o-mini-2024-07-18 and gpt-4o-2024-11-20 for the chat agent generating responses to provided context.

To ensure direct comparability with MemGPT’s DMR results, we also conducted the DMR evaluation using gpt-4-
turbo-2024-04-09.
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Table 1: Deep Memory Retrieval

Memory Model Score

Recursive Summarization† gpt-4-turbo 35.3%
Conversation Summaries gpt-4-turbo 78.6%
MemGPT† gpt-4-turbo 93.4%
Full-conversation gpt-4-turbo 94.4%
Zep gpt-4-turbo 94.8%
Conversation Summaries gpt-4o-mini 88.0%
Full-conversation gpt-4o-mini 98.0%
Zep gpt-4o-mini 98.2%
† Results reported in [3].

The experimental notebooks will be made publicly available through our GitHub repository, and relevant experimental
prompts are included in the Appendix.

4.2 Deep Memory Retrieval (DMR)

The Deep Memory Retrieval evaluation, introduced by [3], comprises 500 multi-session conversations, each containing
5 chat sessions with up to 12 messages per session. Each conversation includes a question/answer pair for memory
evaluation. The MemGPT framework [3] currently leads performance metrics with 93.4% accuracy using gpt-4-turbo, a
significant improvement over the 35.3% baseline achieved through recursive summarization.

To establish comparative baselines, we implemented two common LLM memory approaches: full-conversation context
and session summaries. Using gpt-4-turbo, the full-conversation baseline achieved 94.4% accuracy, slightly surpassing
MemGPT’s reported results, while the session summary baseline achieved 78.6%. When using gpt-4o-mini, both
approaches showed improved performance: 98.0% for full-conversation and 88.0% for session summaries. We were
unable to reproduce MemGPT’s results using gpt-4o-mini due to insufficient methodological details in their published
work.

We then evaluated Zep’s performance by ingesting the conversations and using its search functions to retrieve the top
10 most relevant nodes and edges. An LLM judge compared the agent’s responses to the provided golden answers.
Zep achieved 94.8% accuracy with gpt-4-turbo and 98.2% with gpt-4o-mini, showing marginal improvements over
both MemGPT and the respective full-conversation baselines. However, these results must be contextualized: each
conversation contains only 60 messages, easily fitting within current LLM context windows.

The limitations of the DMR evaluation extend beyond its small scale. Our analysis revealed significant weaknesses
in the benchmark’s design. The evaluation relies exclusively on single-turn, fact-retrieval questions that fail to assess
complex memory understanding. Many questions contain ambiguous phrasing, referencing concepts like "favorite drink
to relax with" or "weird hobby" that were not explicitly characterized as such in the conversations. Most critically, the
dataset poorly represents real-world enterprise use cases for LLM agents. The high performance achieved by simple
full-context approaches using modern LLMs further highlights the benchmark’s inadequacy for evaluating memory
systems.

This inadequacy is further emphasized by findings in [7], which demonstrate rapidly declining LLM performance on
the LongMemEval benchmark as conversation length increases. The LongMemEval dataset [7] addresses many of
these shortcomings by presenting longer, more coherent conversations that better reflect enterprise scenarios, along
with more diverse evaluation questions.

4.3 LongMemEval (LME)

We evaluated Zep using the LongMemEvals dataset, which provides conversations and questions representative of
real-world business applications of LLM agents. The LongMemEvals dataset presents significant challenges to existing
LLMs and commercial memory solutions [7], with conversations averaging approximately 115,000 tokens in length.
This length, while substantial, remains within the context windows of current frontier models, enabling us to establish
meaningful baselines for evaluating Zep’s performance.
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The dataset incorporates six distinct question types: single-session-user, single-session-assistant, single-session-
preference, multi-session, knowledge-update, and temporal-reasoning. These categories are not uniformly distributed
throughout the dataset; for detailed distribution information, we refer readers to [7].

We conducted all experiments between December 2024 and January 2025. We performed testing using a consumer
laptop from a residential location in Boston, MA, connecting to Zep’s service hosted in AWS us-west-2. This distributed
architecture introduced additional network latency when evaluating Zep’s performance, though this latency was not
present in our baseline evaluations.

For answer evaluation, we employed GPT-4o with the question-specific prompts provided in [7], which have demon-
strated high correlation with human evaluators.

4.3.1 LongMemEval and MemGPT

To establish a comparative benchmark between Zep and the current state-of-the-art MemGPT system [3], we attempted
to evaluate MemGPT using the LongMemEval dataset. Given that the current MemGPT framework does not support
direct ingestion of existing message histories, we implemented a workaround by adding conversation messages to the
archival history. However, we were unable to achieve successful question responses using this approach. We look
forward to seeing evaluations of this benchmark by other research teams, as comparative performance data would
benefit the broader development of LLM memory systems.

4.3.2 LongMemEval results

Zep demonstrates substantial improvements in both accuracy and latency compared to the baseline across both model
variants. Using gpt-4o-mini, Zep achieved a 15.2% accuracy improvement over the baseline, while gpt-4o showed an
18.5% improvement. The reduced prompt size also led to significant latency cost reductions compared to the baseline
implementations.

Table 2: LongMemEvals

Memory Model Score Latency Latency IQR Avg Context Tokens

Full-context gpt-4o-mini 55.4% 31.3 s 8.76 s 115k
Zep gpt-4o-mini 63.8% 3.20 s 1.31 s 1.6k
Full-context gpt-4o 60.2% 28.9 s 6.01 s 115k
Zep gpt-4o 71.2% 2.58 s 0.684 s 1.6k

Analysis by question type reveals that gpt-4o-mini with Zep showed improvements in four of the six categories, with
the most substantial gains in complex question types: single-session-preference, multi-session, and temporal-reasoning.
When using gpt-4o, Zep further demonstrated improved performance in the knowledge-update category, highlighting its
effectiveness with more capable models. However, additional development may be needed to improve less capable
models’ understanding of Zep’s temporal data.

These results demonstrate Zep’s ability to enhance performance across model scales, with the most pronounced
improvements observed in complex and nuanced question types when paired with more capable models. The latency
improvements are particularly noteworthy, with Zep reducing response times by approximately 90% while maintaining
higher accuracy.

The decrease in performance for single-session-assistant questions—17.7% for gpt-4o and 9.06% for gpt-4o-
mini—represents a notable exception to Zep’s otherwise consistent improvements, and suggest further research
and engineering work is needed.

5 Conclusion

We have introduced Zep, a graph-based approach to LLM memory that incorporates semantic and episodic memory
alongside entity and community summaries. Our evaluations demonstrate that Zep achieves state-of-the-art performance
on existing memory benchmarks while reducing token costs and operating at significantly lower latencies.

The results achieved with Graphiti and Zep, while impressive, likely represent only initial advances in graph-based
memory systems. Multiple research avenues could build upon these frameworks, including integration of other
GraphRAG approaches into the Zep paradigm and novel extensions of our work.
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Table 3: LongMemEvals Question Type Breakdown

Question Type Model Full-context Zep Delta

single-session-preference gpt-4o-mini 30.0% 53.3% 77.7%↑
single-session-assistant gpt-4o-mini 81.8% 75.0% 9.06%↓
temporal-reasoning gpt-4o-mini 36.5% 54.1% 48.2%↑
multi-session gpt-4o-mini 40.6% 47.4% 16.7%↑
knowledge-update gpt-4o-mini 76.9% 74.4% 3.36%↓
single-session-user gpt-4o-mini 81.4% 92.9% 14.1%↑
single-session-preference gpt-4o 20.0% 56.7% 184%↑
single-session-assistant gpt-4o 94.6% 80.4% 17.7%↓
temporal-reasoning gpt-4o 45.1% 62.4% 38.4%↑
multi-session gpt-4o 44.3% 57.9% 30.7%↑
knowledge-update gpt-4o 78.2% 83.3% 6.52%↑
single-session-user gpt-4o 81.4% 92.9% 14.1%↑

Research has already demonstrated the value of fine-tuned models for LLM-based entity and edge extraction within the
GraphRAG paradigm, improving accuracy while reducing costs and latency [19][25]. Similar models fine-tuned for
Graphiti prompts may enhance knowledge extraction, particularly for complex conversations. Additionally, while current
research on LLM-generated knowledge graphs has primarily operated without formal ontologies [9][4][17][19][26],
domain-specific ontologies present significant potential. Graph ontologies, foundational in pre-LLM knowledge graph
work, warrant further exploration within the Graphiti framework.

Our search for suitable memory benchmarks revealed limited options, with existing benchmarks often lacking robustness
and complexity, frequently defaulting to simple needle-in-a-haystack fact-retrieval questions [3]. The field requires
additional memory benchmarks, particularly those reflecting business applications like customer experience tasks, to
effectively evaluate and differentiate memory approaches. Notably, no existing benchmarks adequately assess Zep’s
capability to process and synthesize conversation history with structured business data. While Zep focuses on LLM
memory, its traditional RAG capabilities should be evaluated against established benchmarks such as those in [17], [27],
and [28].

Current literature on LLM memory and RAG systems insufficiently addresses production system scalability in terms
of cost and latency. We have included latency benchmarks for our retrieval mechanisms to begin addressing this gap,
following the example set by LightRAG’s authors in prioritizing these metrics.

6 Appendix

6.1 Graph Construction Prompts

6.1.1 Entity Extraction

<PREVIOUS MESSAGES>
{previous_messages}
</PREVIOUS MESSAGES>
<CURRENT MESSAGE>
{current_message}
</CURRENT MESSAGE>
Given the above conversation, extract entity nodes from the CURRENT MESSAGE that are explicitly or implicitly
mentioned:
Guidelines:
1. ALWAYS extract the speaker/actor as the first node. The speaker is the part before the colon in each line of dialogue.
2. Extract other significant entities, concepts, or actors mentioned in the CURRENT MESSAGE.
3. DO NOT create nodes for relationships or actions.
4. DO NOT create nodes for temporal information like dates, times or years (these will be added to edges later).
5. Be as explicit as possible in your node names, using full names.
6. DO NOT extract entities mentioned only
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6.1.2 Entity Resolution

<PREVIOUS MESSAGES>
{previous_messages}
</PREVIOUS MESSAGES>
<CURRENT MESSAGE>
{current_message}
</CURRENT MESSAGE>
<EXISTING NODES>
{existing_nodes}
</EXISTING NODES>
Given the above EXISTING NODES, MESSAGE, and PREVIOUS MESSAGES. Determine if the NEW NODE
extracted from the conversation is a duplicate entity of one of the EXISTING NODES.
<NEW NODE>
{new_node}
</NEW NODE>
Task:
1. If the New Node represents the same entity as any node in Existing Nodes, return ’is_duplicate: true’ in the response.
Otherwise, return ’is_duplicate: false’
2. If is_duplicate is true, also return the uuid of the existing node in the response
3. If is_duplicate is true, return a name for the node that is the most complete full name.
Guidelines:
1. Use both the name and summary of nodes to determine if the entities are duplicates, duplicate nodes may have
different names

6.1.3 Fact Extraction

<PREVIOUS MESSAGES>
{previous_messages}
</PREVIOUS MESSAGES>
<CURRENT MESSAGE>
{current_message}
</CURRENT MESSAGE>
<ENTITIES>
{entities}
</ENTITIES>
Given the above MESSAGES and ENTITIES, extract all facts pertaining to the listed ENTITIES from the CURRENT
MESSAGE.
Guidelines:
1. Extract facts only between the provided entities.
2. Each fact should represent a clear relationship between two DISTINCT nodes.
3. The relation_type should be a concise, all-caps description of the fact (e.g., LOVES, IS_FRIENDS_WITH,
WORKS_FOR).
4. Provide a more detailed fact containing all relevant information.
5. Consider temporal aspects of relationships when relevant.
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6.1.4 Fact Resolution

Given the following context, determine whether the New Edge represents any of the edges in the list of Existing Edges.
<EXISTING EDGES>
{existing_edges}
</EXISTING EDGES>
<NEW EDGE>
{new_edge}
</NEW EDGE>
Task:
1. If the New Edges represents the same factual information as any edge in Existing Edges, return ’is_duplicate: true’ in
the response. Otherwise, return ’is_duplicate: false’
2. If is_duplicate is true, also return the uuid of the existing edge in the response
Guidelines:
1. The facts do not need to be completely identical to be duplicates, they just need to express the same information.

6.1.5 Temporal Extraction

<PREVIOUS MESSAGES>
{previous_messages}
</PREVIOUS MESSAGES>
<CURRENT MESSAGE>
{current_message}
</CURRENT MESSAGE>
<REFERENCE TIMESTAMP>
{reference_timestamp}
</REFERENCE TIMESTAMP>
<FACT>
{fact}
</FACT>
IMPORTANT: Only extract time information if it is part of the provided fact. Otherwise ignore the time mentioned.
Make sure to do your best to determine the dates if only the relative time is mentioned. (eg 10 years ago, 2 mins ago)
based on the provided reference timestamp
If the relationship is not of spanning nature, but you are still able to determine the dates, set the valid_at only.
Definitions:
- valid_at: The date and time when the relationship described by the edge fact became true or was established.
- invalid_at: The date and time when the relationship described by the edge fact stopped being true or ended.
Task:
Analyze the conversation and determine if there are dates that are part of the edge fact. Only set dates if they explicitly
relate to the formation or alteration of the relationship itself.
Guidelines:
1. Use ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ) for datetimes.
2. Use the reference timestamp as the current time when determining the valid_at and invalid_at dates.
3. If the fact is written in the present tense, use the Reference Timestamp for the valid_at date
4. If no temporal information is found that establishes or changes the relationship, leave the fields as null.
5. Do not infer dates from related events. Only use dates that are directly stated to establish or change the relationship.
6. For relative time mentions directly related to the relationship, calculate the actual datetime based on the reference
timestamp.
7. If only a date is mentioned without a specific time, use 00:00:00 (midnight) for that date.
8. If only year is mentioned, use January 1st of that year at 00:00:00.
9. Always include the time zone offset (use Z for UTC if no specific time zone is mentioned).
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